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Final report for AFOSR project “Robust Network Transmission

and Storage Using Coding”

The work carried out under this grant established new theory as well as practical coding and
optimization techniques for robust transmission and storage of information in networks. Our work
studied fundamental limits on performance in terms of capacity, reliability and delay, and considered
robustness to adversarial errors, packet losses, link failure, mobility and dynamically changing
topology. The major findings are described below.

1 Coding for arbitrary/adversarial errors and network security

Coding for protection against errors in networks was introduced by Cai and Yeung [1, 2], and
was extensively studied in the literature for the case of single-source multicast with a uniform error
model, i.e. equal capacity network links/packets, any z of which can be erroneous. The symmetry
and simplicity of this case lead to simple cut set characterizations of capacity and coding techniques
that do not extend straightforwardly to more general cases.

We developed a theoretical framework for error correction coding in more general network sce-
narios, showing new coding strategies and capacity bounding techniques that are quite different
from the well-studied uniform single-source multicast case. This work extends network error correc-
tion to a much broader class of networks and provides novel achievability and converse techniques.
The generality of the framework also opens up wider applicability of network error correction the-
ory to new domains such as cryptography-based systems security and streaming codes, which are
described further below.

Firstly, for the case of networks with nonuniform link capacities, we gave capacity bounds that
account for the capacities of forward and feedback links on cuts, and connectivity between these
links. This is in contrast to the uniform case where feedback links do not affect reliable information
flow rate across a cut. We also devised novel coding schemes that tightly integrate error correction
coding with partial error detection at intermediate nodes. These achievability and upper bounding
results coincide in some cases. Our earlier work established results for the case of large capacity
feedback links [3], and our work under this grant addressed the case of small capacity feedback
links [4, 5] for which our previous bounds were loose.

Secondly, we considered the non-multicast case, for which determining capacity in general is an
open problem even without errors. We showed how to combine cut set bounds for different sinks
and error events to obtain tighter bounds on the error correction capacity region. We also showed
a family of single- and two-source two-sink three-layer networks for which these bounds are tight,
giving the exact capacity region [6]. An example of a three-layer network is shown in Figure 1.
We extended this work to error/erasure correction coding for streaming data, described in the next
section.

Thirdly, we designed rateless constructions of network error correction codes that can correct an
a priori unknown number of errors by sending redundancy incrementally, unlike previous network
error correction codes which are designed for a given number of errors. Our constructions are
optimal in that receivers are able to decode when the amount of received and erroneous information
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Figure 1: Example of a one-source two-sink network three-layer network for which we can find the
exact capacity region.

satisfies the cut set bound with respect to the message size, with low complexity and overhead
vanishing in the packet length. Specifically, our work under this grant [7] devised coding schemes
that can exploit shared secret randomness or a low-rate secret channel between source and sink to
reduce coding efficiency compared to our earlier construction in [8]. In the secret channel model,
the source incrementally sends more linearly dependent redundancy of the source message through
the network to combat erasures, and incrementally sends more linearly independent short hashes
of the message on the secret channel to eliminate false information. The destination amasses both
kinds of redundancy until decoding succeeds. In the shared randomness model, the source and
destination share a small fixed random secret that is independent of the input message. Without
a secret channel, both linearly dependent and independent redundancy have to be sent over the
public and unreliable network, necessitating additional redundancy protection.

By removing the requirement for predetermined constraints on the number of errors, these rate-
less coding schemes can be combined with cryptographic signatures for security against adversarial
errors. The combination of information theoretic coding with cryptographic operations is particu-
larly useful in networks of computationally limited nodes such as low-power wireless nodes, which
cannot perform complex cryptographic operations at a high rate. Our approach allows both re-
dundant capacity and computation to be exploited as resources to achieve reliable communication
rates higher than with either cryptographic or information theoretic approaches separately.

We also proposed new key agreement techniques for wireless networks in which one or more
nodes may be adversarial and attempt to disrupt or compromise the key agreement process [9].
Our first scheme allows a pair of nodes to establish a common secret key using multiple multi-hop
paths. Our secure error correcting code construction, designed for a specific topology, achieves
better performance in terms of lower computational complexity and probability of error compared
to our previous constructions in [10]. Our second scheme addresses the scenario of decentralized
distribution of keys from a key pool. Each node needs a particular subset of the keys in the pool,
and obtains them from the source and/or neighboring nodes who have already retrieved subsets of
these keys. Our approach leverages our previously developed multisource network error correction
codes [11] to achieve optimal resilience against errors introduced by adversarial nodes. Specifically,
a node obtains coded combinations of its required keys from neighboring nodes that have subsets
of these keys, achieving significantly stronger error resilience for a given redundancy overhead as
compared to the case without coding.



2 Coding for unreliable links

2.1 Coding for streaming with packet erasures

In streaming data, information needs to be decoded by successive deadlines for uninterrupted
playout at the receiver. We considered coding for packet erasures/errors in streaming of both stored
and real-time (online) content. By modeling the streaming problem as a network error correction
problem with a nested receiver structure, we were able to build on our work on non-multicast
network error correction, described above, to analyze the streaming problem. We provided low-
complexity achievable coding schemes, and, for various erasure/error models, converse bounds that
match exactly or within a guaranteed ratio. These coding schemes do not rely on feedback, making
them particularly suited for scenarios with broadcast and/or feedback delays. We considered differ-
ent bursty and non-bursty erasure models, and showed significant differences in structural features
of codes suited for these various models.

Specifically, for the case of stored content, i.e. all the content is initially present at the source,
we studied the problem in which an arbitrary set of deadlines and demands can be specified.
We first considered the problem of constructing codes that can correct any z packet erasures
(or errors), without a priori knowledge of which packets will be erased (erroneous). We showed
that this problem could be modeled as a network error correction problem in which the receivers
correspond to deadlines in the received packet stream by which particular pieces of information must
be decoded, as illustrated in Figure 2. We characterized the capacity region of feasible demand
vectors for any given set of deadlines and any z erasures (errors), and provided a capacity-achieving
coding scheme where no coding occurs across information demanded by different receivers [12]. We
also considered a sliding window erasure model characterized by two parameters, erasure rate p
and a window size threshold T , in which the code is designed to correct erasure patterns where
the number of erasures in any window of size at least T is upper bounded by a fraction p of the
window size. We showed that our earlier coding scheme is approximately optimal for this erasure
model also [13].

For the case of real-time streaming where messages are created at regular time intervals at
a source, we studied the problem in which the receiver needs to decode each message within a
given delay from its creation time, and considered three erasure models [14, 15]. In the first,
a window-based erasure model, all erasure patterns containing a limited number of erasures in
each sliding window of a specified length are admissible. In the second, a bursty erasure model,
all erasure patterns containing erasure bursts of a specified maximum length separated by guard
intervals of a specified minimum length are admissible. In the third, an i.i.d. erasure model, each
transmitted packet is erased independently with a specified probability. We showed that a time-
invariant intrasession code is asymptotically optimal over all codes (time-varying and time-invariant,
intersession and intrasession) as the number of messages goes to infinity, for both the window-based
erasure model and the bursty erasure model when the maximum erasure burst length is sufficiently
short or long. For the bursty erasure model, we also showed that diagonally interleaved codes
derived from specific systematic block codes are asymptotically optimal over all codes in certain
other cases. For the i.i.d. erasure model, we derived an upper bound on the decoding probability
for any time-invariant code, and showed that the gap between this bound and the performance
of a family of time-invariant intrasession codes is small when the message size and packet erasure
probability are small.

Besides streaming content, we also found another promising application of our online codes in
decentralized control applications involving communication among a network of interacting stable
(or individually feedback-stabilized) plants. Existing work on coding for decentralized control has
primarily focused on stabilization of an unstable plant via communication over a noisy channel in
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Figure 2: A single-source three-layer nested-network topology with three sinks, modeling a stored
content streaming problem with deadlines m1,m2,m3.

the feedback loop. In this setting, Sahai and Mitter [16] showed that older data must be recovered
with increasing reliability (growing exponentially with delay), which is achieved by tree codes
(Schulman [17]). In contrast, in some emerging domains such as smart grids, individual plants are
stable while communication between plants is aimed at optimizing a cost or performance metric.
Our online codes are designed for recovering timely rather than older data, and hence are suited
for such stable distributed control problems [18].

2.2 Error-estimating codes

The concept of error-estimating codes (EEC) [19] was motivated by recent advances in wire-
less networking that leverage partially correct packets, for instance in scenarios such as rate-
adaption [20, 21, 22] and real-time video streaming [23]. Unlike error correcting codes which
correct errors, EEC allows the receiver to estimate the bit-error-rate (BER), using lower overhead
compared to ECC. Using this BER information, the authors in [19] showed that the performance
of upper-layer applications can be significantly improved. Furthermore, an error estimation code
based on group sampling, which we term group-sampling error-estimating codes (GSEEC), was pro-
posed in [19] and shown to achieve significantly lower communication overhead and computational
complexity compared with existing error correcting codes.

We proposed in [24] a novel error estimation code, RAKEE, based on the theory of random
walks. We provided theoretical analysis showing that RAKEE achieves the same asymptotic per-
formance as GSEEC with respect to the packet length, that is constant communication overhead
and linear coding complexity, while achieving better error decay performance. To be precise, under
GSEEC the probability of unreliable estimation is proved to decay polynomially with increasing
communication overhead, while under ALEEC such probability decays super-polynomially. Nu-
merical experiments showed that RAKEE improves upon GSEEC in terms of both estimating bias
and mean square estimation error.



3 Universal robust distributed multicast codes

Random linear network coding has been extensively studied for decentralized multicast [25].
Although robust to changes in topology and packet losses, existing schemes require knowledge of
the network size and the number of sinks, or at least an upper bound. If these parameters are
unavailable, such codes have no guarantees of correctness, hence they are not universal. Also,
changing the field size to accommodate additional sinks or changes in network size entails changing
the coding operation all nodes.

We developed the first universal distributed linear codes that have the advantage of not requiring
a priori knowledge of network size and number of sinks, and being robust to changes in these
parameters [26]. This is achieved by defining a hierarchical structure on the network that can
be determined in a distributed fashion, and having each node choose coding coefficients randomly
from a field of rational functions whose effective size grows with the distance from the source in
this hierarchical structure. In particular, linear coding operations are chosen from finite subsets
of an appropriate infinite field. A convenient field to use is the field of rational functions over
F2. Operations over this field can be implemented via binary filters (convolutional codes) at each
node. As information percolates down the network, each node makes its own estimate of the
size of the subset of F2(z) from which that node should choose its coding operations, so as to
meet a pre-specified tolerance on the overall error-probability. We showed that this can be done
using only information that can be percolated down the network at rates that are asymptotically
negligible in the block-length, such that our codes are asymptotically rate-optimal. The code
structure is designed to allow arbitrary changes in the topology and participating nodes, without
requiring changes to existing random code choices. These codes also have polynomial-time design
and implementation complexity.

4 Network capacity and impact of a single link

Characterizing the capacity region of a general non-multicast network is a major open problem
in network coding. The complexity of existing computational methods for bounding the capacity
of general networks grows exponentially with network size. This motivated us to investigate hier-
archical methods for simplifying networks in order to find capacity bounds. We also studied the
impact on network capacity of the loss of a single link in terms of the link capacity, as well as the
effect of probabilistic arrivals of messages at source nodes. Our results are described in more detail
below.

Firstly, we introduced in [27] a novel hierarchical approach for analyzing capacity regions of
acyclic networks consisting of capacitated noiseless links with general demands. This approach
sequentially replaces components of the network with simpler components containing fewer links
or nodes, such that the resulting network is computationally simpler to analyze and its capacity
provides an upper or lower bound on the capacity of the original network. The accuracy of the
resulting bounds can be characterized as a function of the link capacities. Surprisingly, some
families of network components can be simplified without affecting the network capacity.

Secondly, we studied the effect of loss of a single link of capacity c on the capacity of a network
of error-free bit pipes. We proved that if all the sources are available at a single source node,
then removing a link of capacity c cannot change the capacity region of the network by more than
c in each dimension [27]. We further extended this result to the case of multi-source, multi-sink
networks for some special network topologies [28].

Thirdly, we considered the effect of probabilistic message arrivals and queuing on the capacity of
general networks. The Shannon capacity is traditionally studied in the information theory/network
coding literature. It is defined as the average rate of communicated information under the assump-



tion that the sources are saturated and can encode long blocks of source symbols, while receivers
decode only after the entire block has been received. On the other hand, in many applications, the
source messages arrive at source nodes statistically, resulting in idle and busy periods. The stable
capacity of a network is defined as the set of all source arrival rate vectors that can be achieved by
a stable solution in which each receiver node can eventually decode the desired source messages,
and the queue size of each network node approaches a stable distribution over time.

Our work in [29] established an equivalence result between the Shannon capacity and the stable
capacity of general non-multicast networks. Specifically, given a discrete-time network with mem-
oryless, time-invariant, discrete-output channels, we proved that the Shannon capacity equals the
stable capacity. This result applies even when neither the Shannon capacity nor the stable capacity
is known for the given demands. The result also applies to both discrete alphabet channels and
Gaussian channels.

5 Robust distributed storage

5.1 Distributed storage allocation

We investigated the problem of allocating a total storage budget T across a number of dis-
tributed storage nodes so as to maximize recovery reliability. Specifically, the problem is to store
a unit size data object using the given redundancy budget, such that the probability of recovering
the data object is maximized under a given probabilistic access or failure model [30]. By using an
appropriate code, successful recovery can be achieved whenever the total amount of data accessed
is at least 1, the size of the original data object. This optimization problem is challenging in general
because of its combinatorial nature, and a complete solution remains an open problem.

We studied several variations of the problem with different allocation models and access models.
Among our results, we characterized a wide range of conditions of interest for which it is optimal to
replicate a data object in entirety on a small number of nodes, or for which it is optimal to spread
coded pieces of the data across many nodes.

Specifically, in the independent probabilistic access model, each storage node is accessed i.i.d. with
a given probability p. We showed that the symmetric allocation that spreads the budget maximally
over all nodes is asymptotically optimal in a regime of interest. Specifically, we derived an upper
bound for the suboptimality of this allocation, and showed that when p > 1/T the performance
gap vanishes asymptotically as the total number of storage nodes grows. This is a regime of in-
terest because it allows for a high probability of recovery. On the other hand, we showed that the
symmetric allocation that spreads the budget minimally is optimal when p is sufficiently small. In
such an allocation, the data object is stored in its entirety in each nonempty node, making coding
unnecessary. We also explicitly determined the optimal symmetric allocation (a practical family of
allocations where all nonzero allocated values are equal) for a wide range of parameter values of p
and T , illustrated in Figure 3. Additionally, we derived a converse bound on the success probability,
which is close to or coincides with the achievable performance for some parameter values, as shown
in Figure 4.

In the fixed size subset access model, the objective is to maximize the probability of recovering
the data object from a random subset of fixed size r. This problem is asymptotically equivalent to
the fractional version, studied by Alon et al. [31], of a classical conjecture by Erdös on hypergraph
matchings. We characterized a region of high recovery probability, in which the optimal allocation
can be shown to allocate an amount 1/r to each of ⌊Tr⌋ nodes.

We further built on this work to optimize message transmission delay using multiple paths in
disruption tolerant networks. For minimization of expected delay we provided a complete charac-
terization of the optimal symmetric allocation with respect to network parameter values [32]. We



Figure 3: Plot of access probability p against budget T . The black dashed curve marks the points
satisfying p = 1

T . Maximal spreading is optimal among symmetric allocations in the colored
regions above the curve, while minimal spreading (uncoded replication) is optimal among symmetric
allocations in the colored regions below the curve. In the remaining region near the curve, the
optimal symmetric allocation changes in a complicated way due to integer effects.

Figure 4: Plot of recovery failure probability against budget T for each symmetric allocation for
(n, p) =

(
20, 35

)
. Parameter m denotes the number of nonempty nodes in the symmetric allocation.

The gray and black curves show two lower bounds for the recovery failure probability of an optimal
allocation.



applied our results to design a data dissemination and storage protocol for mobile delay-tolerant
networks, and showed in simulation experiments that the choice of storage allocation can have a
significant impact on the recovery delay performance.

5.2 Detection of adversarial errors in distributed storage

We investigated in [33] the problem of maintaining an encoded dynamic coded distributed
storage system where arbitrary adversarial errors can be introduced on an unknown subset of
storage nodes. This distributed storage model had been introduced in [34] for the case without
errors.

Leveraging the existing redundancy of the system, we proposed a simple linear hashing scheme
to detect errors in the storage nodes. In particular, we showed that for a data object of total size
m using an (n, k) MDS code, up to t1 = ⌊(n − k)/2⌋ errors can be detected, with probability of
failure smaller than 1/m, by communicating only O(n(n− k) logm) bits to a trusted verifier. Our
result constructs small projections of the data that preserve the errors with high probability and
builds on a pseudorandom generator that fools linear functions.
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